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Abstract. An explicitN -fold Darboux transformation with multiparameters for a kind of coupled
derivative nonlinear Schrödinger equation is constructed with the help of a gauge transformation
of a spectral problem. As a reduction, a Darboux transformation of the Gerdjikov–Ivanov equation
is obtained. Furthermore, the explicit soliton-like solutions of the Gerdjikov–Ivanov equation are
given by applying its Darboux transformation.

1. Introduction

The nonlinear Schrödinger (NLS) equation is one of the most generic soliton equations, and
arises from a wide variety of fields, such as quantum field theory, weakly nonlinear dispersive
water waves and nonlinear optics [1–3]. To study the effect of higher-order perturbations,
various modifications and generalizations of the NLS equations have been proposed and studied
[3–10]. Among them, there are three celebrated equations with derivative-type nonlinearities,
which are called the derivative nonlinear Schrödinger (DNLS) equations. One is the Kaup–
Newell equation [4]

iqt + qxx + i(|q|2q)x = 0

which is usually called DNLSI. The second type is the Chen–Lee–Liu equation [5, 6]

iqt + qxx + i|q|2qx = 0

which is called DNLSII. The last one takes the form

iqt + qxx − iq2q∗
x + 1

2q
3q∗2 = 0 (1.1)

which is called the Gerjikov–Ivanov (GI) equation or DNLSIII [7, 8]. In equation (1.1),
q∗ denotes the complex conjugation of q. It is known that these three equations may be
transformed into each other by a gauge transformation, and the method of gauge transformation
can also be applied to some generalized cases [8, 10–12]. In recent years, the spectral problem,
Hamiltonian structure, Painlevé property, exact solutions and other properties associated with
the Kaup–Newell equation have been investigated in detail [3, 4, 13–15]. Therefore, the
corresponding results for the GI equation (1.1) may be obtained in principle by some gauge
transformation [6, 8]. However, to obtain their explicit forms, one must solve an integrable
equation in practice (for example, see [6]). This integration will become very complicated
with increasing iteration times, especially in the multi-soliton case.
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In this paper, we study the GI equation (1.1) with the help of a spectral problem and the
Darboux matrix method. The Darboux transformation (DT) has proved to be one of most
fruitful algorithmic procedures to obtain explicit solutions of partial differential equations
[16–21]. Its advantage is that the new solutions can be obtained successively by using
an algebraic algorithm. This paper is organized as follows. In the next section, we shall
establish an explicit N -fold DT with multi-parameter for a generalized Kaup–Newell spectral
problem and the associated coupled DNLS equations (see (2.1) and (2.2) below) by using a
systematic procedure. In section 3, an explicit Darboux transformation of the GI equation (1.1)
is obtained through a reduction technique. Furthermore, the one- and two-soliton solutions of
GI equation (1.1) are given explicitly by applying its DT.

The DT presented in this paper has some merits. It can be interpreted as a nonlinear
superposition of the initial solution and the N -soliton solution of the GI equation (1.1), and it
contains all pure N -soliton solutions. Moreover, from this DT the solutions of the GI equation
are reduced to solving a linear algebraic system. It is very easy to produce their multi-soliton
solutions by symbolic computation on a computer.

2. Darboux transformation

In this section, we shall construct a DT for the coupled DNLS equations

iqt + qxx + iq2rx + 1
2q

3r2 = 0 (2.1)

irt − rxx + ir2qx − 1
2q

2r3 = 0. (2.2)

Equations (2.1) and (2.2) are exactly reduced to the GI equation (1.1) for the choice r = −q∗.
The Lax pairs corresponding to coupled DNLS equations (2.1) and (2.2) can be given by

the generalized Kaup–Newell spectral problem

ψx = Uψ ψ =
(
ψ1

ψ2

)

U =
( −iλ2 − 1

2 iqr λq

λr iλ2 + 1
2 iqr

) (2.3)

and the auxiliary problem [15]

ψt = Vψ V =
(
a b

c −a

)
(2.4)

with

a = −2iλ4 − iqrλ2 + 1
2 (rqx − qrx) + 1

4 iq2r2

b = 2qλ3 + iqxλ c = 2rλ3 − irxλ.

where q and r are two potentials, and λ is a spectral parameter.
It is easy to see that the Lax pairs (2.3) and (2.4) are transformed to

ψ̃x = Ũ ψ̃ Ũ = (Tx + T U)T −1 (2.5)

ψ̃t = Ṽ ψ̃ Ṽ = (Tt + T V )T −1 (2.6)

under a gauge transformation

ψ̃ = T ψ. (2.7)



Darboux transformation and soliton-like solutions for the GI equation 6927

By cross differentiating (2.5) and (2.6), we obtain

Ũt − Ṽx + [Ũ , Ṽ ] = T (Ut − Vx + [U,V ])T −1

which implies that in order to make equations (2.1) and (2.2) invariant under the transformation
(2.7), it is crucial to find a matrix T such that Ũ , Ṽ have the same forms as U , V . At the same
time the old potentials q and r in U , V are mapped into new potentials q̃ and r̃ in Ũ , Ṽ .

Let the Darboux matrix T in (2.7) be in the form

T = T (λ) =
(
A B

C D

)
(2.8)

where

A = λN +
N−1∑
k=0

Akλ
k B =

N−1∑
k=0

Bkλ
k

C =
N−1∑
k=0

Ckλ
k D = λN +

N−1∑
k=0

Dkλ
k.

Ak , Bk , Ck and Dk are given by a linear algebraic system

N−1∑
k=0

(Ak + Bkαj )λ
k
j = −λNj

N−1∑
k=0

(Ck + Dkαj )λ
k
j = −αjλ

N
j (2.9)

with

αj = φ2(λj ) − γjψ2(λj )

φ1(λj ) − γjψ1(λj )
1 � j � 2N (2.10)

where φ = (φ1, φ2)
T , ψ = (ψ1, ψ2)

T are two basic solutions of the spectral problem (2.3)
and (2.4), λj and γj (λk �= λj , γk �= γj , as k �= j ) are some parameters suitably chosen
such that the determinant of coefficients for (2.9) are non-zero. Therefore, Ak , Bk , Ck and Dk

(0 � k � N − 1) are uniquely determined by (2.9).
Equation (2.8) shows that det T (λ) is a (2N)th-order polynomial of λ, and

det T (λj ) = A(λj )D(λj ) − B(λj )C(λj ).

On the other hand, from (2.9) we have

A(λj ) = −αjB(λj ) C(λj ) = −αjD(λj ). (2.11)

Therefore, it holds that

det T (λj ) = 0

which implies that λj (1 � j � 2N) are 2N roots of det T (λ), that is,

det T (λ) =
2N∏
j=1

(λ − λj ). (2.12)

By using the above facts, we can prove the following proposition:
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Proposition 1. The matrix Ũ determined by (2.5) has the same form as U , that is,

Ũ =
( −iλ2 − 1

2 iq̃ r̃ λq̃

λr̃ iλ2 + 1
2 iq̃ r̃

)

where the transformations between q, r and q̃, r̃ are given by

q̃ = q + 2iBN−1 r̃ = r − 2iCN−1. (2.13)

The transformation (2.7) and (2.13): (ψ, q, r) → (ψ̃, q̃, r̃) is called a DT of the spectral
problem (2.3).

Proof. Let T −1 = T ∗/ det T and

(Tx + T U)T ∗ =
(
f11(λ) f12(λ)

f21(λ) f22(λ)

)
. (2.14)

It is easy to see that f11(λ) and f22(λ) are (2N +2)th-order polynomials in λ, f12(λ) and f21(λ)

are (2N + 1)th-order polynomials in λ. From (2.3) and (2.10), we find that

αjx = λj r − λjqα
2
j + 2i

(
λ2
j + 1

2qr
)
αj . (2.15)

By using (2.11) and (2.15), we can verify that all λj (1 � j � 2N) are roots of fkj (λ)
(k, j = 1, 2). Again noting (2.12), then we conclude that

det T |fkj (λ) k, j = 1, 2

which, together with (2.14) gives

(Tx + T U)T ∗ = (det T )P (λ) (2.16)

with

P(λ) =
(
p
(2)
11 λ

2 + p
(1)
11 λ + p

(0)
11 p

(1)
12 λ + p

(0)
12

p
(1)
21 λ + p

(0)
21 p

(2)
22 λ

2 + p
(1)
22 λ + p

(0)
22

)

where p
(l)
kj (k, j = 1, 2, l = 0, 1, 2) are undetermined functions independent of λ. Now

equation (2.16) can be written in the form

Tx + T U = P(λ)T . (2.17)

By comparing the coefficients of λN+2, λN+1 and λN in (2.17), we obtain

p
(1)
11 = p

(1)
22 = p

(0)
12 = p

(0)
21 = 0 p

(2)
11 = −p

(2)
22 = −i

p
(1)
12 = q + 2iBN−1 = q̃ p

(1)
21 = r − 2iCN−1 = r̃

p
(0)
11 = − 1

2 iqr + rBN−1 − p
(1)
12 CN−1 = − 1

2 iq̃ r̃

p
(0)
22 = 1

2 iqr + qCN−1 − p
(1)
12 BN−1 = 1

2 iq̃ r̃ .

From (2.5) and (2.17), we see that Ũ = P(λ). The proof is completed. �

Let the φ and ψ also satisfy equation (2.4), we try to prove that Ṽ in (2.6) has the same
form as V under the transformation (2.7) and (2.13).
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Proposition 2. Under DT (2.7) and (2.13), the matrix Ṽ in (2.6) has the same form as V , that
is,

Ṽ =
(
ã b̃

c̃ −ã

)
(2.18)

in which

ã = −2iλ4 − iq̃ r̃λ2 + 1
2 (r̃q̃x − q̃ r̃x) + 1

4 iq̃2r̃2

b̃ = 2q̃λ3 + iq̃xλ c̃ = 2r̃λ3 − ir̃xλ.

The old potentials q and r are mapped into new ones q̃ and r̃ according to the same DT (2.7)
and (2.13).

Proof. In a way similar to theorem 1, we denote T −1 = T ∗/ det T and

(Tt + T V )T ∗ =
(
g11(λ) g12(λ)

g21(λ) g22(λ)

)
. (2.19)

Direct calculation shows that g11(λ), g22(λ) or g12(λ), g21(λ) are (2N + 4)th or (2N + 3)th
polynomials in λ, respectively. With the help of (2.4), (2.10) and (2.11), we find that

αjt = c(λj ) − 2a(λj )αj − b(λj )α
2
j (2.20)

At(λj ) = −Bt(λj )αj − B(λj )αjt (2.21)

Ct(λj ) = −Dt(λj )αj − D(λj )αjt . (2.22)

We can verify by (2.11) and (2.20)–(2.22) that λj (1 � λj � 2N) are also roots of gkj (λ)
k, j = 1, 2. Therefore, we have

det T (λ)|gkj (λ) k, j = 1, 2.

and thus

(Tt + T V )T ∗ = (det T )Q(λ)

with

Q(λ) =
(
q
(4)
11 λ

4 + q
(3)
11 λ

3 + q
(2)
11 λ

2 + q
(1)
11 λ + q

(0)
11 q

(3)
12 λ

3 + q
(2)
12 λ

2 + q
(1)
12 λ + q

(0)
12

q
(3)
21 λ

3 + q
(2)
21 λ

2 + q
(1)
21 λ + q

(0)
21 q

(4)
22 λ

4 + q
(3)
22 λ

3 + q
(2)
22 λ

2 + q
(1)
22 λ + q

(0)
22

)

that is

Tt + T V = Q(λ)T (2.23)

Comparing the coefficients of λN+4, λN+3, λN+2, λN+1 and λN in (2.23) leads to

q
(3)
11 = q

(1)
11 = q

(3)
22 = q

(1)
22 = q

(2)
12 = q

(0)
12 = q

(2)
21 = q

(0)
21 = 0.

q
(4)
11 = −q

(4)
22 = −2i q

(3)
12 = 2q̃ q

(3)
21 = 2r̃

q
(2)
11 = −iqr + 2rBN1 − q

(3)
12 CN−1 = −iq̃ r̃

q
(2)
22 = iqr + 2qCN1 − q

(3)
21 BN−1 = iq̃ r̃

q
(1)
12 = iqx + 4iBN−3 + 2qAN−2 − 2q̃DN−2 + iqrBN−1 + iq̃ r̃BN−1 (2.24)

q
(1)
21 = −irx − 4iCN−3 + 2rDN−2 − 2r̃AN−2 − iqrCN−1 − iq̃ r̃CN−1 (2.25)
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q
(0)
11 = 1

2 (rqx − qrx) + 1
4 iq2r2 − irxBN−1 − iq̃xCN−1 − ir(2iBN−3 + qAN−2 − q̃Dn−2)

−iq̃(−2iCN−3 − r̃AN−2 + rDN−2) (2.26)

q
(0)
22 = − 1

2 (rqx − qrx) − 1
4 iq2r2 + iqxCN−1 + r̃xBN−1 + ir̃(2iBN−3 + qAN−2 − q̃DN−2)

+iq(−2iCN−3 − r̃AN−2 + rDN−2). (2.27)

On the other hand, equating the coefficients of λN−1 in (2.17) gives

2iBN−3 + qAN−2 − q̃DN−2 = −BN−1x − 1
2 iqrBN−1 − 1

2 iq̃ r̃BN−1 (2.28)

−2iCN−3 + rDN−2 − r̃AN−2 = −CN−1x + 1
2 iqrCN−1 + iq̃ r̃CN−1. (2.29)

On substituting (2.28) and (2.29) into (2.24)–(2.27), direct calculations show that

q
(1)
12 = iq̃x q

(1)
21 = −ir̃x q

(0)
11 = −q

(0)
22 = 1

2 (r̃q̃x − q̃ r̃x) + 1
4 iq̃2r̃2.

Then (2.18) is obtained from (2.6) and (2.23). The proof is completed. �

Proposition 1 and 2 show that the transformation (2.7) and (2.13) changes the Lax pairs
(2.3) and (2.4) into another set of Lax pairs (2.5) and (2.6) of the same type. Therefore,
both of the Lax pairs lead to the same coupled DNLS equations (2.1) and (2.2). We call the
transformation (ψ, q, r) → (ψ̃, q̃, r̃) a DT of coupled DNLS equations (2.1) and (2.2). In
summary, we arrive at

Theorem 1. The solutions (q, r) of coupled DNLS equations (2.1) and (2.2) are mapped into
their new solutions (q̃, r̃) under the DT (2.7) and (2.13).

3. Reduction of Darboux transformation and application

In this section, we discuss the DT of the GI equation (1.1) and give its explicit solutions. For
this purpose we let r = −q∗, and choose two solutions of the Lax pairs (2.3) and (2.4)

φ(λ) = (φ1(λ), φ2(λ))
T ψ(λ) = (−φ∗

2 (λ
∗), φ∗

1 (λ
∗))T

and parameters

λ2j = λ∗
2j−1 γ2j = −γ ∗−1

2j−1 1 � j � N.

Then it is easy to show that α−1
2j = −α∗

2j−1, D∗
k = Ak , C∗

k = −Bk (0 � k � N − 1). In this
way, the solutions corresponding to (2.9) and (2.10) are reduced to

N−1∑
k=0

(Ak + α2j−1Bk)λ
k
2j−1 = −λN2j−1 (3.1)

N−1∑
k=0

(α∗
2j−1Ak − Bk)λ

∗k
2j−1 = −α∗

2j−1λ
∗N
2j−1 1 � j � N. (3.2)

and

α2j−1 = φ2(λ2j−1) − γ2j−1ψ2(λ2j−1)

φ1(λ2j−1) − γ2j−1ψ1(λ2j−1)
. (3.3)

Now we have the following theorem:
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Theorem 2. Suppose that α2j−1 (1 � j � N) is defined by (3.3), and Ak , Bk are given by the
linear algebraic system (3.1) and (3.2). Then the solution q of the GI equation (1.1) is mapped
into its a new solution q̃ under the DT

q̃ = q + 2iBN−1. (3.4)

In the following, we shall apply the DT to construct explicit solutions of the GI
equation (1.1). As usual we make DT starting from a special solution of equation (1.1).
Substituting q = 0 into the Lax pairs (2.3) and (2.4), we find that two basic solutions can be
chosen as

φ(λ) =
(

exp(−iλ2x − 2iλ4t)

0

)
ψ(λ) =

(
0

exp(iλ2x + 2iλ4t)

)
.

According to (3.3), we have

α2j−1 = − exp(2iλ2
2j−1x + 4iλ4

2j−1t + δj + iµj) 1 � j � N (3.5)

where γ2j−1 = exp(δj + iµj). For simplicity, we shall discuss the two special cases N = 1
and 2.

(I) For N = 1, let λ1 = ξ1 + iη1 (ξ1 �= η1). Then solving the linear algebraic system (3.1)
and (3.2) leads to

B0 = iη1 exp(iY1) sech(X1)

where
X1 = −4ξ1η1x − 16ξ1η1(ξ

2
1 − η2

1)t + δ1

Y1 = 2(ξ 2
1 − η2

1)x + 4(ξ 4
1 + η4

1 − 6ξ 2
1 η

2
1)t + µ1.

(3.6)

In this way, a one-soliton solution of the GI equation (1.1) is obtained with the help of the
DT (3.4)

q̃ = 2iB0. (3.7)

The plots of this solution are given in figure 1.
(II) For N = 2, let λ1 = ξ1 + iη1, λ3 = ξ2 + iη2 (ξ1 �= ξ2). Then we obtain from (3.5)

α1 = − exp(X1 + iY1) α3 = − exp(X2 + iY2)

in which X1, Y1 are defined by (3.6), and X2, Y2 are given by

X2 = −4ξ2η2x − 16ξ2η2(ξ
2
2 − η2

2)t + δ2

Y2 = 2(ξ 2
2 − η2

2)x + 4(ξ 4
2 + η4

2 − 6ξ 2
2 η

2
2)t + µ2.

Solving the linear algebraic system (3.1) and (3.2) yields

B1 = )B1

)
where ) is the determinant of the coefficients for the linear algebraic system
(3.1) and (3.2), and )B1 is produced from ) by replacing its fourth column with

(−λ2
1,−λ2

3,−α∗
1λ

∗2
1 ,−α∗

3λ
∗2
3 )T , that is

) =

∣∣∣∣∣∣∣∣∣

1 α1 λ1 α1λ1

1 α3 λ3 α3λ3

α∗
1 −1 α∗

1λ
∗
1 −λ∗

1

α∗
3 −1 α∗

3λ
∗
3 −λ∗

3

∣∣∣∣∣∣∣∣∣
)B =

∣∣∣∣∣∣∣∣∣∣

1 α1 λ1 −λ2
1

1 α3 λ3 −λ2
3

α∗
1 −1 α∗

1λ
∗
1 −α∗

1λ
∗2
1

α∗
3 −1 α∗

3λ
∗
3 −α∗

3λ
∗2
3

∣∣∣∣∣∣∣∣∣∣
.

In this way, another solution of the GI equation (1.1) is obtained by using the DT (3.4)

q̃ = 2iB1 (3.8)

which is a two-soliton solutions. The plots are given in figure 2.
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Figure 1. One-soliton solution (3.7) with ξ1 = 0.5, η1 = 0.2, δ1 = 0.3, µ1 = 0.6. (a) Real part
of q, (b) imaginary part of q, (c) modulus of q, (d) q at t = 0.

Figure 2. Two-soliton solution (3.8) with ξ1 = 0.5, ξ2 = −0.3, η1 = 0.2, η2 = 0.1, δ1 = 0.3,
δ2 = −0.1, µ1 = 0.6, µ2 = −0.2. (a) Real part of q, (b) imaginary part of q, (c) modulus of q,
(d) q at t = 0.
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